Shared.csgraph¶
- Shared.csgraph(weight=None, respect_bounds: bool = True, backward_positive: bool = False, dtype=None) → scipy.sparse.csr.csr_matrix[source]¶
Get the compressed sparse graph, shape (n, n).
A network/graph with n nodes can be represented by an node to node adjacency matrix H. If there is a connection from node i to node j, then H[i, j] = w, where w is the weight of the connection.
- Parameters
- weightndarray
Weight on network edges, shape (m, ).
- respect_boundsbool, default=True
If True, an undirected edge from s to t with
lb<0 and ub>0
will lead to separate entries in H. I.e., H[s, t] = w and H[t, s] = w.- backward_positivebool, default=False
Whether to negate weight for undirected edges if
respect_bounds
is True. I.e., H[s, t] = w and H[t, s] = -w.- dtypedtype, optional
Datatype of csgraph.
- Returns
- csr_matrix
Compressed sparse network graph.
Examples
SiouxFalls:
>>> import paminco >>> net = paminco.net.load_sioux() >>> H = net.shared.csgraph(np.arange(net.m) + 1) >>> H[:5, :5].toarray() array([[ 0., 1., 2., 0., 0.], [ 3., 0., 0., 0., 0.], [ 5., 0., 0., 6., 0.], [ 0., 0., 8., 0., 9.], [ 0., 0., 0., 11., 0.]])