Network.shortest_path¶
- Network.shortest_path(weight=None, s=None, backward_edges: bool = False, backward_positive: bool = False, multiprocessing: bool = False, return_source_indices: bool = False)[source]¶
Compute shortest path wrt. weight.
- Parameters
- weightarray_like, optional
Edge weights, default: unit weight (1) for all edges.
- sint or array_like, optional
If specified, only compute the paths originating at the given indices. Default: all nodes in edges.
- backward_edgesbool, default=False
Whether to use separate entries in adjacency matrix H for undirected edges, i.e., H[s, t] = w and H[t, s] = w.
- backward_positivebool, default=False
Whether to negate weight for undirected edges, i.e., H[s, t] = w and H[t, s] = -w.
- multiprocessingbool, default=False
Whether to calculate D and Pr using multiple processes.
- return_source_indicesbool, default=False
Whether to return dict that maps node_id in
s
to indices in return matrices D and Pr.
- Returns
- Dndarray
Distance matrix.
- Pr: ndarray
Predecessor matrix.
- dict, optional
Mapping of node_id in
s
to indices in D and Pr ifreturn_source_indices
is True.
See also
paminco.net.shared.Shared.csgraph
Setup of adjacency matrix used to find shortest path.
scipy.sparse.csgraph.dijkstra
Shortest path computation.