NodePotentials¶
- class paminco.algo.efa.NodePotentials(net_nodes)[source]¶
Class that stores values that relate to the potential in some region.
The potential \(\mathbf{\pi}\) for some region \(R_{\mathbf{t}}\) is given by:
\[\mathbf{\pi} = \mathbf{\pi}_{\mathbf{t}} + \lambda_{\mathbf{t}}^{\text{max}} \Delta \mathbf{\pi}_{\mathbf{t}} = \mathbf{L}_{\mathbf{t}}^{\ast} (\mathbf{\Gamma}\mathbf{d}_{\mathbf{t}}) + \lambda_{\mathbf{t}}^{\text{max}} (\mathbf{L}_{\mathbf{t}}^{\ast} \mathbf{b}),\]where \(\mathbf{L}_{\mathbf{t}}^{\ast}\) is the generalized inverse of the weighted Laplacian, \(\Gamma\) the incidence matrix and \(\mathbf{d} _{\mathbf{t}} = \frac{\mathbf{b} _{\mathbf{t}}}{\mathbf{a} _{\mathbf{t}}}\). Here, \(\mathbf{b} _{\mathbf{t}}\) is the vector of offsets and \(\mathbf{a} _{\mathbf{t}}\) the vector of slopes of the linear marginal cost functions \(\tilde{f}_e\) for the region \(R_{\mathbf{t}}\).
A node potential \(\mathbf{\pi}\) induces a flow \(\mathbf{f}^{-1}(\mathbf{\pi})\) by:
\[\mathbf{f}^{-1}(\mathbf{\pi}) = \mathbf{C}_{\mathbf{t}} \Gamma^T\mathbf{\pi} - \mathbf{d}_{\mathbf{t}}. \]See also
paminco.net.cost.PiecewiseQuadraticCoefficients
- Attributes
- node_idxndarray (n, )
Node indices, ndarray of int.
- node_lblndarray (n, )
Node labels, ndarray of str.
- pindarray (n, )
Node potential \(\mathbf{\pi}\).
- pi_tndarray (n, )
Potential offset of the current region \(\mathbf{\pi}_{\mathbf{t}}\).
- dpi_tndarray (n, )
Potential direction of the current region \(\Delta \mathbf{\pi}_{\mathbf{t}}\).
- d_tildendarray (n, )
\(\tilde{\mathbf{d}}_{\mathbf{t}} = \mathbf{\Gamma}\mathbf{d}_{\mathbf{t}}\),